COMBINATORICA

Bolyai Society - Springer-Verlag

A TWO-SPHERES PROBLEM ON HOMOGENEOUS TREES

FRANCISCO JAVIER GONZÁLEZ VIELI

Received November 27, 1995 Revised March 16, 1998

We show that, given m, n two relatively prime natural numbers, if a complex valued function f on a homogeneous tree satisfies the mean value property for all spheres of radius m and all spheres of radius n, then f is harmonic.

1. Introduction

A homogeneous tree of degree k ($k \in \mathbb{N}$) is a connected graph without circuit (a tree) such that every vertex has exactly k neighbours. If x and y are two vertices of any tree, there exists a unique sequence z_0, \ldots, z_n of vertices all distinct such that z_i is a neighbour of z_{i+1} for $i = 0, \ldots, n-1$ and $z_0 = x$, $z_n = y$; letting d(x,y) = n defines a distance on the tree (see [1] §1.1). Then, up to isometry, there is only one homogeneous tree of degree $k \in \mathbb{N}$: we denote it by \mathcal{A}_k ; it is infinite as soon as $k \geq 2$, which we will suppose in the following. (For example, $\mathcal{A}_2 \simeq \mathbb{Z}$.)

If x is a vertex of \mathcal{A}_k and r a positive integer, we write S(x,r) for the sphere of centre x and radius r, i.e. the set $\{y \in \mathcal{A}_k | d(x,y) = r\}$. The definition of \mathcal{A}_k forces S(x,1) to have k elements for every vertex x. It can be shown by induction that $\operatorname{card} S(x,r) = k(k-1)^{r-1}$ if $r \geq 1$, for every vertex x. Let r be an integer ≥ 0 ; we define linear operators Σ_r and \mathcal{M}_r on the vector space $\mathcal{F}(\mathcal{A}_k)$ of complex valued functions on \mathcal{A}_k by, if $x \in \mathcal{A}_k$,

$$(\Sigma_r f)(x) = \sum_{y \in S(x,r)} f(y),$$
$$(\mathcal{M}_r f)(x) = \frac{1}{\operatorname{card} S(x,r)} \sum_{y \in S(x,r)} f(y).$$

Mathematics Subject Classification (1991): 05C05, 43A85

Work partially supported by the Swiss National Science Foundation.

A function f on \mathcal{A}_k is said to be harmonic if $\mathcal{M}_1 f = f$.

It is easily seen that if f in $\mathcal{F}(\mathcal{A}_k)$ is harmonic, it verifies the *mean value property*: $\mathcal{M}_r f = f$, for every $r \geq 0$ (see §2). By analogy with what occurs on \mathbf{R}^n (Delsarte's theorem, see [3], [6]), we are interested in knowing when the mean value property for *two* values of r implies the harmonicity of f. We have obtained the following partial answer:

Proposition. Let m, n two distinct natural numbers. Are equivalent:

- i) for all k > 2 we have: $f \in \mathcal{F}(A_k)$ and $\mathcal{M}_m f = f = \mathcal{M}_n f$ imply f is harmonic;
- ii) m and n are relatively prime.

Remark. We have followed for the start of our proof the approach of Cohen and Picardello [2], who fully answer the question: To what extent does the property of $\mathcal{M}_r f$ being zero for two values of r imply that f is zero?

2. Preliminaries

For a function f on A_k and $x \in A_k$ we have (see [2, p.75])

$$\Sigma_1(\Sigma_1 f)(x) = (\Sigma_2 f)(x) + k(\Sigma_0 f)(x),$$

and if $r \geq 2$,

$$\Sigma_r(\Sigma_1 f)(x) = (\Sigma_{r+1} f)(x) + (k-1)(\Sigma_{r-1} f)(x).$$

Consequently we introduce the polynomials $p_r, q_r \in \mathbf{Z}[X]$ defined for all $r \in \mathbf{Z}_+$ by induction:

$$p_0 = 1$$
, $p_1 = X$, $p_2 = X^2 - k$ and $p_{r+1} = Xp_r - (k-1)p_{r-1}$ if $r \ge 2$; $q_0 = 1$, $q_1 = X - k$ and $q_r = p_r - k(k-1)^{r-1}$ if $r \ge 2$.

We have $\Sigma_r = p_r(\Sigma_1)$ for any $r \ge 0$. So $\mathcal{M}_r f = f$ is equivalent to $p_r(\Sigma_1)(f) = k(k-1)^r f$, that is, to $q_r(\Sigma_1)(f) = 0$. One can of course define q_r by a direct induction:

$$\begin{cases} q_0 = 1, \ q_1 = X - k, \ q_2 = X^2 - k^2 \text{ and} \\ q_{r+1} = Xq_r - (k-1)q_{r-1} + (X-k)k(k-1)^{r-1} \text{ if } r \ge 2. \end{cases}$$

It follows, by an easy recurrence, that $q_r(k) = 0$, and so $(X - k)|q_r$ for all $r \in \mathbb{N}$.

If $f \in \mathcal{F}(\mathcal{A}_k)$ is harmonic, $(\Sigma_1 - k)(f) = 0$; therefore $q_r(\Sigma_1)(f) = 0$, which shows that f verifies the mean value property on every sphere in \mathcal{A}_k .

3. Proof

The implication $i) \Rightarrow ii$) is almost trivial. For k = 2, if m and n are not relatively prime, set $l = \gcd(m, n)$ and let f on $\mathcal{A}_2 \simeq \mathbf{Z}$ be the indicator function of $l\mathbf{Z}$; then $\mathcal{M}_m f = f = \mathcal{M}_n f$ but f is not harmonic.

We now show $ii) \Rightarrow i$). Suppose that, given $m, n \in \mathbb{N}$ distinct, the polynomials q_n and q_m have (X - k) as only common divisor. By Bézout, there exist $a, b \in \mathbb{Z}[X]$ such that $aq_n + bq_m = X - k$. It follows that if $f \in \mathcal{F}(\mathcal{A}_k)$ satisfies $\mathcal{M}_n f = f = \mathcal{M}_m f$, that is, $q_n(\Sigma_1)(f) = 0 = q_m(\Sigma_1)(f)$, then $(\Sigma_1 - k)(f) = 0$, which means f is harmonic.

So we are brought down to study when q_n and q_m have (X - k) as greatest common divisor; in other words, if we define polynomials $Q_n = q_n/(X - k) \in \mathbf{Z}[X]$, we want to find for which $m, n \in \mathbf{N}$ the greatest common divisor of Q_n and Q_m is 1 or, equivalently, the resultant of Q_n and Q_m , res (Q_n, Q_m) , is not zero.

Let us briefly recall some facts about the resultant of two polynomials f, g in K[t] (K a field) which are not both constant:

- (a) res(f,g) is the determinant of a matrix, each of whose coefficients is either zero or a coefficient of f or a coefficient of g;
 - (b) $\operatorname{res}(f,c) = \operatorname{res}(c,f) = c^{\operatorname{deg} f}$ if $c \in K$ and $\operatorname{deg} f > 0$;
 - (c) $\operatorname{res}(f,g) = (-1)^{\operatorname{deg} f \cdot \operatorname{deg} g} \operatorname{res}(g,f)$;
 - (d) $\operatorname{res}(h \cdot l, q) = \operatorname{res}(h, q) \cdot \operatorname{res}(l, q)$;
- (e) $\operatorname{res}(q \cdot g + r, g) = \gamma^{j-l}(-1)^{k(j-l)}\operatorname{res}(r, g)$, where $j = \deg(q \cdot g + r)$, $k = \deg g$, $l = \deg r$ and γ is the leading coefficient of g.

(Here by convention $\deg c = 0$ for all $c \in K$.) It follows that $\operatorname{res}(f,g) = 0$ if and only if f and g have a common factor in K[t]. (See also [4, p.309].)

The Q_r are given by: $Q_1 = 1$, $Q_2 = X + k$ and

(*)
$$Q_{r+1} = XQ_r - (k-1)Q_{r-1} + k(k-1)^{r-1} \quad \text{if} \quad r \ge 2.$$

Hence $\operatorname{res}(Q_m, Q_n)$ is a polynomial in k with integer coefficients (by (a)). But a polynomial in one variable with integer coefficients whose constant term is 1 or -1 never vanishes on $\mathbb{Z}\setminus\{1,-1\}$. So it will be sufficient to establish that the constant term of $\operatorname{res}(Q_m,Q_n)$ is 1 or -1. Since this constant term is obtained by letting 'k=0' in Q_m and Q_n , we are led to define, for every $r\in\mathbb{N}$, $\varphi_r(X)=Q_r(X|k=0)\in\mathbb{Z}[X]$; it is of degree r-1 and also given by

$$\varphi_1 = 1, \ \varphi_2 = X \text{ and } \varphi_{r+1} = X\varphi_r + \varphi_{r-1} \text{ if } r \geq 2.$$

(Hence the φ_r are so called "Fibonacci polynomials"; in particular $\varphi_r(1)$ is the usual Fibonacci number F_r .) Matricially

$$\begin{pmatrix} \varphi_{r+2} & \varphi_{r+1} \\ \varphi_{r+1} & \varphi_r \end{pmatrix} = \begin{pmatrix} X & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \varphi_{r+1} & \varphi_r \\ \varphi_r & \varphi_{r-1} \end{pmatrix};$$

then, if we define $\varphi_0 = 0$,

$$\begin{pmatrix} \varphi_{r+2} & \varphi_{r+1} \\ \varphi_{r+1} & \varphi_r \end{pmatrix} = \begin{pmatrix} X & 1 \\ 1 & 0 \end{pmatrix}^{r+1}.$$

Therefore

$$\begin{pmatrix} \varphi_{r+s+2} & \varphi_{r+s+1} \\ \varphi_{r+s+1} & \varphi_{r+s} \end{pmatrix} = \begin{pmatrix} X & 1 \\ 1 & 0 \end{pmatrix}^{r+(s+1)} = \begin{pmatrix} \varphi_{r+1} & \varphi_r \\ \varphi_r & \varphi_{r-1} \end{pmatrix} \begin{pmatrix} \varphi_{s+2} & \varphi_{s+1} \\ \varphi_{s+1} & \varphi_s \end{pmatrix};$$

so $\varphi_{r+s} = \varphi_{r-1}\varphi_s + \varphi_r\varphi_{s+1}$.

We first show by a recurrence on r that $\operatorname{res}(\varphi_{r+1}, \varphi_r) = \pm 1$ for all $r \in \mathbb{N}$. Clearly $\operatorname{res}(\varphi_2, \varphi_1) = 1$. Suppose $\operatorname{res}(\varphi_r, \varphi_{r-1}) = \pm 1$; then $\operatorname{res}(\varphi_{r+1}, \varphi_r) = \operatorname{res}(X\varphi_r + \varphi_{r-1}, \varphi_r) = \pm \operatorname{res}(\varphi_r, \varphi_r) = \pm \operatorname{res}(\varphi_r, \varphi_{r-1}) = \pm 1$ by (e) (the leading coefficient of φ_r being 1).

We next show that for all s, t in \mathbb{N} , there exist h_t^s in $\mathbb{Z}[X]$ with $\varphi_{ts} = h_t^s \varphi_s$. This is clear for t = 1. Suppose $t \ge 1$ and $\varphi_{ts} = h_t^s \varphi_s$ with h_t^s in $\mathbb{Z}[X]$; then $\varphi_{(t+1)s} = \varphi_{ts+s} = \varphi_{ts-1}\varphi_s + \varphi_{ts}\varphi_{s+1} = (\varphi_{ts-1} + h_t^s \varphi_{s+1})\varphi_s$.

Take now n, m in \mathbb{N} with n < m and write m = qn + r with $0 \le r < n$. We have $\varphi_m = \varphi_{qn+r} = \varphi_{qn-1}\varphi_r + \varphi_{qn}\varphi_{r+1}$; so by (e)

$$\operatorname{res}(\varphi_m, \varphi_n) = \operatorname{res}(\varphi_{qn-1}\varphi_r + h_q^n \varphi_n \varphi_{r+1}, \varphi_n) = \pm \operatorname{res}(\varphi_{qn-1}\varphi_r, \varphi_n).$$

Now

$$\pm 1 = \operatorname{res}(\varphi_{qn}, \varphi_{qn-1}) = \operatorname{res}(h_q^n \varphi_n, \varphi_{qn-1}) = \operatorname{res}(h_q^n, \varphi_{qn-1}) \cdot \operatorname{res}(\varphi_n, \varphi_{qn-1}).$$

But res (h_q^n, φ_{qn-1}) and res $(\varphi_n, \varphi_{qn-1})$ are both integers (by (a)); this implies that res $(\varphi_n, \varphi_{qn-1}) = \pm 1$. Hence

$$\operatorname{res}(\varphi_m, \varphi_n) = \operatorname{res}(\varphi_{qn+r}, \varphi_n) = \pm \operatorname{res}(\varphi_{qn-1}\varphi_r, \varphi_n)$$
$$= \pm \operatorname{res}(\varphi_{qn-1}, \varphi_n) \cdot \operatorname{res}(\varphi_r, \varphi_n) = \pm \operatorname{res}(\varphi_r, \varphi_n).$$

Let $r = r_1 > ... > r_l > r_{l+1} = 0$ be the sequence of remainders obtained by the Euclidean algorithm applied to (m, n). Iterating the above calculation we get:

$$\operatorname{res}(\varphi_m, \varphi_n) = \pm \operatorname{res}(\varphi_{r_1}, \varphi_n) = \pm \operatorname{res}(\varphi_{r_1}, \varphi_{r_2}) = \dots = \pm \operatorname{res}(\varphi_{r_{l-1}}, \varphi_{r_l}).$$

When m and n are relatively prime, $r_l = 1$; so $\varphi_{r_l} = 1$ and (b) gives $\operatorname{res}(\varphi_m, \varphi_n) = \pm 1$. The proposition is established.

Remarks. 1. When m and n are not relatively prime, $1 < r_l$ and $r_l | r_{l-1}$; so $\deg \varphi_{r_l} > 1$, $\varphi_{r_l} | \varphi_{r_{l-1}}$ and $\operatorname{res}(\varphi_m, \varphi_n) = 0$. **2.** The end of the proof is inspired by the presentation of Fibonacci numbers in [5, I.11]. **3.** Define a function f on \mathcal{A}_k so: take a vertex x of \mathcal{A}_k and set $f(y) = (-1)^{d(x,y)}$; f is not harmonic but $\mathcal{M}_{2r}f = f$ for all $r \in \mathbf{Z}_+$.

Commentary. For a degree k > 2, the condition gcd(m,n) = 1 is *not* necessary; for example $res(Q_6,Q_3) = k^2(k-1)^4(k-2)^2$. In fact, computing $res(Q_m,Q_n)$ for small values of m and n (n < m, $3 \le n \le 10$, $6 \le m \le 25$) one gets the impression that, for k > 2, a plausible necessary and sufficient condition is the one in remark 3: m

and n not both even! However, the constant term $k(k-1)^{r-1}$ in the recurrence relation (*) defining the polynomials Q_{r+1} makes the full use of the properties of the resultant ((e) in particular) difficult. By letting k=0, which has no meaning geometrically (empty tree?), we get a much handier recurrence; the condition we obtain is the best possible with this reduction, as shown by remark 1.

Acknowledgement. We express our thanks to the referee for the suggested improvements.

References

- [1] P. Cartier: Fonctions harmoniques sur un arbre, Symp. Math., IX, 1972, 203–270.
- [2] J. M. COHEN and M. A. PICARDELLO: The 2-circle and 2-disk problems on trees, Isr. J. Math., 64 (1) (1988), 73–86.
- [3] J. Delsarte: Note sur une propriété nouvelle des fonctions harmoniques, C. R. Acad. Sci. Paris, 246 (1958), 1358–1360.
- [4] N. JACOBSON: Basic Algebra I, W. H. Freeman and Co., San Francisco, 1974
- [5] H. Scheid: Zahlentheorie, B. I. Wissenschaftsverlag, Mannheim, 1994.
- [6] L. ZALCMAN: Offbeat integral geometry, Amer. Math. Monthly, 87 (1980), 161–175.

Francisco Javier González Vieli

Institut für Angewandte Mathematik Universität Heidelberg Im Neuenheimer Feld 294 69120 Heidelberg GERMANY

m29@ix.urz.uni-heidelberg.de

From September 1998:

Institut de Mathématiques Université de Lausanne 10105 Lausanne Switzerland